Gamesa 5.0 MW
Innovating for reliability

G128-4.5 MW
G128-5.0 MW
G132-5.0 MW
G128-5.0 MW Offshore
G132-5.0 MW Offshore
Once again, Gamesa has demonstrated that it has the knowledge, experience and resources needed to develop wind turbines capable of extracting maximum power from the wind.

The Spanish company has taken a leap forward in one of its biggest, most ambitious technological challenges to date. Gamesa has designed, developed and manufactured its new generation of wind turbines, the Gamesa 5.0 MW platform.

With this new product platform, Gamesa intends to position itself at the forefront of the multi-megawatt platform segment. The company thus expands its technology and service offering by including in this platform three onshore wind turbines and two offshore models in order to meet the needs of all the customers in the wind power industry.

By using assembly equipment and transport methods similar for those used in other Gamesa platforms, the company can provide access of the Gamesa 5.0 MW to a wide variety of sites.

Its innovative modular design and technology ensure maximum reliability and meet the most demanding grid connection regulations and the most restrictive environmental standards.
Gamesa 5.0 MW designed to fully meet all client needs

Offers superior reliability:
- Nacelle and blades modular design focused on minimizing inactive time.
- Drive train with no high-speed rotating components.
- Exhaustive validation and testing plan, as well as the first operational prototype since 2009.

Complies with similar logistics and construction requirements as those of the Gamesa 2.0-2.5 MW:
- Modular design of the nacelle and blades to optimize transport and logistics.
- The heaviest module weighs less than the weight of a 2-MW nacelle.
- Gamesa FlexiFit®: The add-on crane attaches to nacelle to simplify and expedite assembly and maintenance.

Optimizes cost of energy (CoE):
- Higher production for projects with limited space.
- Optimization of energetical positions.
- Potential savings in project civil works.

Complies with the most demanding grid connection requirements:
- Gamesa GridMate®: Optimal grid connections due to permanent magnet generator technology + full converter.

Complies with environmental regulations:
- Reduced visual impact.
- Noise reduction: Gamesa NRS® system and new aerodynamic blade profile.

Global capacity for production, installation and operation and maintenance

Gamesa is a company specializing in technologies for sustainable energy, mainly wind energy, and is one of the world leaders in the manufacture of wind turbines.

Within this sector, Gamesa manages the entire process, from the design, manufacture and installation of wind turbines, to their operation and maintenance. The over 28,800 MW installed throughout the world is evidence of the excellent performance of Gamesa’s wind turbines. This optimum behavior is only possible with a full command of the technology and of the product with all its critical components.

Gamesa has the capacity to design, manufacture, operate and maintain its wind turbines. The tailor-made development of the critical components of its turbines—from the gearbox to the blades—ensures excellence in the design and the very highest quality standards. At the same time, it permits the shortest delivery times and the fastest technical response during the maintenance period.

Research, Development and Innovation form an integral part of the company’s processes and products as well as its tasks and operations all along the supply chain, ensuring customer satisfaction and the search for excellence. In addition to this high ability to innovate, Gamesa also has a remarkable production capacity, having production centres in the main wind markets: Spain and China, as the global production and supply hubs, while maintaining its local production capacity in India and Brazil.

Gamesa fully controls the production process and attends to the needs of its clients on all five continents, offering its customers the highest quality standards and short customer response times.

* Data as of 31st, Dec 2013
Gamesa has applied design and validation concepts to its new wind turbine development that are only comparable to those used in such demanding industries as the aeronautical industry, where product reliability must be assured from the first day in operation.

Gamesa 5.0 MW is the result of the evolution of Gamesa technology.

Versatile platform

Gamesa 5.0 MW:

- Maximum annual production in medium and low sites

Gamesa 5.0 MW: Discovering Gamesa 5.0 MW

<table>
<thead>
<tr>
<th>Model</th>
<th>G128-4.5 MW</th>
<th>G128-5.0 MW</th>
<th>G132-5.0 MW</th>
<th>G128-5.0 MW Offshore</th>
<th>G132-5.0 MW Offshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td>IIA</td>
<td>IIA / IIA</td>
<td>IIA</td>
<td>IIB</td>
<td>5</td>
</tr>
<tr>
<td>Rated Power</td>
<td>4,500 kW</td>
<td>5,000 kW</td>
<td>5,000 kW</td>
<td>5,000 kW</td>
<td>5,000 kW</td>
</tr>
<tr>
<td>Tower Heights</td>
<td>81, 95, 120, 140 m</td>
<td>81(2), 95, 120, 140 m</td>
<td>95, 120, 140 m</td>
<td>80-94 m + project specific</td>
<td>Project specific</td>
</tr>
<tr>
<td>Type Certificate</td>
<td>IEC and DiBT Certificates</td>
<td>In process</td>
<td>In process</td>
<td>IEC Certificate</td>
<td>In process</td>
</tr>
<tr>
<td>Env. / Opt.(3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>50 Hz/60 Hz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Track Record</td>
<td>16</td>
<td>(4)</td>
<td>(5)</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Under development
(2) Only tower height available for Class I
(3) Different versions and optional kits are available to adapt machinery to high or low temperatures and saline or dust environments.
(4) First units in 2014
(5) First units in 2015
Greater size for greater production

Improved lay-out optimizes energetical positions.

Maximum production for sites with limited space.

Power

<table>
<thead>
<tr>
<th>Wind speed (m/s)</th>
<th>G128-4.5 MW</th>
<th>G128-5.0 MW</th>
<th>G132-5.0 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

850 kW

2.0-2.5 MW

5.0 MW

increase in production
2.0-2.5 MW
850 kW
5.0 MW

68 storeys
140 m

AEP
v=7.5 m/s
k=2
Superior reliability for offshore sites

Gamesa Offshore wind turbines have been designed to adapt perfectly to the conditions of any offshore site. These conditions can be highly variable and sometimes extreme due to adverse weather and the harsh marine environment, which makes access to the wind farm difficult.

The advanced technology utilized in the Gamesa Offshore wind turbines assures high reliability, boosts energy production, reduces maintenance, minimizes downtime, and ultimately maximizes the profitability of each project.

Reduced Maintenance

Gamesa Offshore wind turbines are designed to increase the time intervals between planned maintenance visits and to minimize the instances of unplanned maintenance. Gamesa ensures this through manifold proven means, including comprehensive testing and validation of mechanical and electrical systems, the modular design and the use of advanced predictive/diagnostic systems.

In addition, the Gamesa FlexiFit® self mount add-on crane, makes the logistics and maintenance at offshore sites easier, faster and less costly by avoiding the need for specialty vessels and high tonnage cranes.

Experience driving profitability

Gamesa has installed more than 28 GW in all types of environments all over the world and leverages a unique knowledge base in its activities. Gamesa has integrated its more than two decades of experience in the development, manufacture, installation and maintenance of wind turbines in its latest generation of state-of-the-art offshore wind technology.

G128-5.0 MW Offshore and G132-5.0 MW Offshore combine breakthrough innovation with validated and reliable technologies to deliver competitive energy costs and optimal profitability throughout the entire lifecycle of the wind farm.

Gamesa own wind expertise has been complemented specifically for the harsh marine environment through cross-sector collaboration: the Gamesa Offshore wind turbines have been developed with experienced, renowned leaders from the naval industry meeting defense-level standards of reliability.

This collaboration addresses some of the market’s main concerns, such as cost-efficient civil engineering infrastructures, wind turbine reliability, low maintenance needs and reduced energy costs.

In the summer 2013, Gamesa has successfully completed the installation of its G128-5.0 MW Offshore prototype at Arinaga Quay, located in the Canary Islands (Atlantic Ocean). This is a key milestone in an ambitious development plan that builds on validated, proven technologies. This first unit has allowed to achieve the Type Certificate as scheduled.

First prototype
Advantages of the Gamesa 5.0 MW platform

- Individual pitch and multi-variable control minimize weight, loads and noise.
- Sectional blade for easy transport and installation.
- Compact, high-performance drive train reduces mechanical stress.
- Permanent magnet synchronous generator and full converter technology that allow the most demanding grid code requirements to be met.
- Modular design of the nacelle and blades for maximum reliability and easy assembly and maintenance.
- Add-on crane attaches to nacelle for assisting in the assembly and maintenance of the main modules.
- Aerodynamic blade design and the Gamesa NRS® control system reduce noise and maximize production.
- Gamesa’s new aerodynamic profiles reduce noise and maximize production.
- Gamesa GridMate®: the electrical system for the Gamesa 5.0 MW is based on a permanent magnet synchronous generator and a full converter. Gamesa GridMate® is comprised of four modules that operate in parallel which allows partial load operation in the event of individual failure, and complies with the most demanding grid connection requirements.

Gamesa InnoBlade®
The innovative sectional blade is manufactured using a combination of materials in a pioneering structure that reduces weight. Current tooling and equipment used to transport 2-MW models to the site are also suitable for the Gamesa InnoBlade®. Gamesa’s new aerodynamic profiles reduce noise and maximize production.

Gamesa SMP System: system for predictive maintenance.

Gamesa WindNet®: the advanced SCADA technology for online wind farm control and monitoring.

Gamesa MultiSmart®: The wind turbine control system constantly monitors the data it collects to regulate each individual blade, minimize vibration and reduces the load on some components up to 30%. This control system incorporates the most advanced technologies to reduce noise, based on optimizing aerodynamics and control.

Gamesa CompacTrain®
The 5.0 MW drive train designed by Gamesa consists of a semi-integrated main shaft and a 2-stage gearbox with mid-speed range output. This integrated design makes the unit more compact, with fewer components. Furthermore, elimination of high-speed rotating mechanical components, and use of the mid-range speed output improves the turbine reliability.

Technology developed entirely by Gamesa

- State-of-the-art blade design and development
- State-of-the-art nacelle and drive train design and development

Gamesa FlexiFit®
Add-on crane, coupled to nacelle, capable of assembling the main modules.

Gamesa FlexiFit® is used for on-site assembly and servicing of large components. Its main advantage is that it is coupled to the nacelle and requires no additional external structure. In many situations, it is an alternative to the use of heavy cranes. It requires no special means of transport to be moved and consists of several modules assembled at ground level. Once Gamesa FlexiFit® is fixed to the nacelle, the main components of the wind turbine can be raised and lowered.
Reliability brought about through a thorough program of validation checks and tests

This goal has been achieved because of an ambitious validation and testing program that has allowed the Gamesa 5.0 MW to start operating at maximum availability right from the outset:

- More than 500 tests on components of the various wind turbines in the Gamesa 5.0 MW platform were carried out at 100 certified laboratories in the United States, Japan and Europe.
- More than 190 functional and/or integration tests performed at the Wind Turbine Test Laboratory (LEA) at the National Renewable Energy Centre (CENER, Spain), one of the most highly qualified international technology centers specializing in applied research, development and promotion of renewable energies.
- More than 300,000 hours of validation and test engineering.

This extensive validation and development program has taken over 6 years. It was designed to test each component and system under real-life operating conditions, to confirm that they will function under the most demanding conditions.

One of the key advantages of the Gamesa 5.0 MW platform is its compliance with the logistics and construction requirements of the Gamesa 2.0-2.5 MW platform. The modular design of the nacelle and blades of the Gamesa 5.0 MW means that the heaviest module does not exceed the total weight of the Gamesa 2.0-2.5 MW platform, which makes it just as easy to transport and assemble as a 2.0-2.5 MW wind turbine.

The Gamesa InnoBlade® segmented blade, patented by Gamesa, can be transported by road with no need for additional resources other than those already used for the Gamesa 2.0-2.5 MW wind turbine. The longest module is no more than 35 meters long. Furthermore, lifting the nacelle is the final step in the assembly requiring a heavy-duty crane. The remaining modules only require the help of a small auxiliary crane for assembly.
Simple maintenance cuts stoppage times

Predictive maintenance system

The Gamesa SMP-12, the predictive maintenance system is an essential tool for advanced detection of potential deterioration or faults in the main wind-turbine components.

Gamesa SMP-12 is the result of an analysis of a large number of wind turbines to identify the essential requirements with which a predictive maintenance system must comply:

- Continuous control of critical wind turbine components.
- Signal processing and alarm detection capacity.
- Integration in Gamesa Windnet®.
- Easy installation and maintenance.
- Low cost.

The system is designed to minimize corrective operations. Gamesa SMP system consists of a device located in the nacelle and a data-processing center, capable of processing and providing useful data about the condition of critical mechanical wind-turbine components.

The Gamesa 5.0 MW has also been designed to take platform maintainability to a higher level by incorporating elements that optimize preventive and corrective maintenance.

Preventive maintenance:

- RCM (Reliability Centered Maintenance): This reduces the time spent on preventive maintenance tasks.
- Automatic lubrication system.

Corrective maintenance:

- NLS (Nacelle Lower Structure): Nacelle lower structure allowing more space for servicing tasks to be performed.
- Easier replacement of large components: there is no need to disassemble the rotor to change the Gamesa CompacTrain®.

Optimum grid connection

The Gamesa GridMate® is the solution for the Gamesa 5.0 MW platform that assures optimum grid connection. The system uses a permanent magnet synchronous generator with independent modules and a full frequency converter. This solution allows the most demanding grid code connection requirements to be met.

- Optimum performance at variable speed at any wind speed.
- De-coupling between the mechanical part and the grid; thus preventing grid disruptions from affecting the machine.
- Improves efficiency at partial loads by optimally using the individual power modules in the converter.
- Smooth connection and disconnection from the grid.
- Active and reactive power control through conversion of all the power generated.
- Compliance with grid connection requirements.

Range of power factor: Support of DV voltage drop: Injection of reactive current: Adjustment of active, reactive, frequency and voltage:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Gamesa GridMate®</th>
<th>Gamesa SMP-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of power factor</td>
<td>0.9 cap / 0.9 ind</td>
<td>YES</td>
</tr>
<tr>
<td>Support of DV voltage drop</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Injection of reactive current</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Adjustment of active, reactive, frequency and voltage</td>
<td>YES, with Scada WindNet®</td>
<td>YES</td>
</tr>
</tbody>
</table>

1. Multi-pole synchronous GENERATOR with four independent modules in parallel.
2. CONVERTER with four independent modules and built-in automatic circuit breaker.
3. TRANSFORMER with multiple grid voltage connection options.
<table>
<thead>
<tr>
<th></th>
<th>G128-4.5 MW</th>
<th>G128-5.0 MW</th>
<th>G132-5.0 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>128 m</td>
<td>132 m</td>
<td></td>
</tr>
<tr>
<td>Swept area</td>
<td>12,868 m²</td>
<td>13,685 m²</td>
<td></td>
</tr>
<tr>
<td>BLADES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of blades</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>62.5 m</td>
<td>64.5 m</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Organic matrix composite reinforced with fiber glass or carbon fiber</td>
<td>Organic matrix composite reinforced with fiber glass or carbon fiber</td>
<td>One-piece</td>
</tr>
<tr>
<td>Type</td>
<td>Segmented</td>
<td>Segmented/One-piece</td>
<td>One-piece</td>
</tr>
<tr>
<td>TOWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Steel, hybrid or concrete</td>
<td>Steel</td>
<td>Project specific</td>
</tr>
<tr>
<td>Height</td>
<td>81, 95, 120, 140 m</td>
<td>95, 120, 140 m</td>
<td>Project specific</td>
</tr>
<tr>
<td>GEAR BOX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>2 planetary stages</td>
<td>2 planetary stages</td>
<td>2 planetary stages</td>
</tr>
<tr>
<td>Ratio</td>
<td>1:37.88</td>
<td>1:41.405</td>
<td>1:41.405</td>
</tr>
<tr>
<td>GENERATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Permanent magnet synchronous generator with independent modules in parallel</td>
<td>Permanent magnet synchronous generator with independent modules in parallel</td>
<td>Permanent magnet synchronous generator with independent modules in parallel</td>
</tr>
<tr>
<td>Nominal power</td>
<td>4,500 kW</td>
<td>5,000 kW</td>
<td>5,000 kW</td>
</tr>
<tr>
<td>Voltage</td>
<td>690 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz / 60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>IP 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation speed</td>
<td>448 rpm</td>
<td>490 rpm</td>
<td>490 rpm</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.9 CAP - 0.9 IND *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Power factor at output terminals of the wind turbine on the low voltage side before entering the transformer, at the rated grid voltage.