Table of Contents

1. InfraCal TOG/TPH Analyzer, Model CVH Overview... 4
 1.1. Introduction .. 4
 1.2. Basic measurement concept ... 4
 1.3. Analyzer description .. 4
 1.3.1. Front operating panel .. 4
 1.3.2. Back panel .. 5
 1.3.3. Description of the push button controls ... 6
 1.4. Analyzer Features .. 6
 1.4.1. Internal Calibration ... 6
 1.4.2. External Communication ... 6
 1.4.3. Recall Function/Averaging Results .. 6
 1.4.4. Printing the Result ... 6

2. Getting Started .. 7
 2.1. Installation ... 7
 2.1.1. Location ... 7
 2.1.2. Power Requirements .. 7
 2.1.3. Warm up time ... 7
 2.2. Zeroing the Analyzer .. 7
 2.2.1. Setting the timer ... 8
 2.2.2. Establishing Zero ... 8
 2.2.3. Zero Check .. 8

3. Analyzer Calibration .. 9
 3.1. Data Presentation .. 9
 3.2. Considerations for Calibration Standards .. 9
 3.2.1. Calibration correlated to an Alternate Method .. 9
 3.3. Preparing Calibration Standards ... 10
 3.3.1. Preparing Volumetric Standards ... 10
 3.3.2. Preparing Gravimetric Standards ... 10
 3.4. Calibrating in the Analyzer ... 11
 3.4.1. Selecting the Calibration Mode .. 12
 3.4.2. Collecting calibration data .. 12
 3.4.3. Entering the User Calibration Data with the Edit program 12
 3.4.4. User Calibration Mode Procedure ... 13
 3.4.5. Calibration printing .. 13

4. Analyzing an Oil Sample .. 13
 4.1. Analyzer Pre-Check .. 13
 4.2. 10 to 1 Extraction Procedure for Oil in Water .. 13
 4.2.1. Supplies Needed for Extraction in Water .. 13
 4.2.2. Considerations ... 14
 4.2.3. Total Oil and Grease (TOG) Extraction from Water .. 14
 4.2.4. Total Petroleum Hydrocarbon (TPH) Extraction from Water 15
 4.3. 1 to 1 Extraction Procedure for Oil in Soil ... 15
 4.3.1. Supplies Needed .. 15
 4.3.2. Total Oil and Grease (TOG) Extraction from Soil .. 15
 4.3.3. Total Petroleum Hydrocarbon (TPH) Extraction from Soil 16
 4.4. Dilution Procedures ... 16
 4.4.1. 10:1 Dilution ... 16
 4.5. Averaged Results Display ... 16
5. Detailed Sample Stage Description ... 17
 5.1. Cuvette (CVH) sample stage ... 17
 5.1.1. Cuvette Sample Stage Description .. 17
 5.1.2. Cuvette (Model CVH) Measurement Concept 18
 5.1.3. Cuvette Considerations ... 18

6. Analyzer Specifications .. 19
 6.1. External Power Requirements: ... 19
 6.2. Physical: .. 19
 6.3. Environmental: .. 19
 6.4. Electrical .. 19
 6.5. Calibration: ... 20

7. Analyzer Communications Interface ... 20
 7.1. Abstract .. 20
 7.2. Physical Connection ... 20
 7.3. Communications port setup parameters ... 21
 7.4. Operation ... 21
 7.5. Data Logging .. 21
 7.6. Remote Zero Balance Control ... 22
 7.7. Remote Calibration Control ... 22

8. Service and Customer Support ... 23

Appendix A: Alternate Data Presentation .. 24
Appendix B-Correlation to an Alternate method ... 25
Appendix C: Solvent Options .. 26

List of Figures

Figure 1 - The InfraCal TOG/TPH Analyzer: Front View of Analyzer 4
Figure 2: The Display and Control Panel .. 5
Figure 3: The TOG/TPH Analyzer: Rear View .. 5
Figure 4: The TOG/TPH Analyzer Model CVH Sample Stage: Front View 17
Figure 5: The TOG/TPH Analyzer Model CVH: Top View 17
Figure 6: Measurement of IR Absorption with a Cuvette 18
1. InfraCal TOG/TPH Analyzer, Model CVH Overview

1.1. Introduction

The InfraCal TOG/TPH Analyzer, Model CVH, is designed to measure solvent extractable material (hydrocarbons or oil and grease) by infrared determination in water or wastewater. The InfraCal Model CVH InfraCal TOG/TPH Analyzer is designed for use with EPA Methods 413.2 and 418.1 that use Freon. With the discontinued use of Freon, other infrared transparent solvents, such as a hydrocarbon-free grade of perchloroethylene, AK-225 or S-316 may be used in the extraction procedure.

A dual detector is used in the TOG/TPH Analyzer to measure hydrocarbon concentrations at 3.4 micrometers (2940cm\(^{-1}\)) with a reference at 2.5 micrometers (4000cm\(^{-1}\)).

1.2. Basic measurement concept

The InfraCal TOG/TPH Analyzer makes use of the fact that hydrocarbons such as oil and grease can be extracted from water or soil through the use of an appropriate solvent and extraction procedure. The extracted hydrocarbons absorb infrared energy at a specific wavelength and the amount of energy absorbed is proportional to the concentration of oil and grease in the solvent. The analyzer can be calibrated to read out directly in the desired units.

1.3. Analyzer description

![Figure 1: The InfraCal TOG/TPH Analyzer: Front View of Analyzer](image)

1.3.1. Front operating panel

The front panel consists of a 4 digit LED display and four labeled, touch-sensitive push button controls as illustrated in Figure 2. The LED display remains illuminated while the analyzer is plugged in (switched on). When the instrument is on and not in use, the display may either show the result of the last analysis, or it may show *idle*.
1.3.2. **Back panel**

The main power socket for the 12 Volt power supply is located on the back panel. The back panel also provides a standard nine pin, female DB9 connector for serial (RS232-C) data communications with the analyzer. This requires the use of a standard straight through serial data cable. See Section 8 for details of data communications with the InfraCal TOG/TPH Analyzer. The CAL lockout switch deactivates the front panel CAL button to keep the internal calibration table from being inadvertently changed or turned off. For calibration, the switch is ON (I). After calibration the switch may be moved to the locked position (O). The back panel also contains the CE Mark designation indicating compliance with the codes for operation within the European Community countries, and the analyzer serial number. Make a permanent note of the serial number, and provide this number when contacting Wilks Enterprise with a service or warranty related issue.
1.3.3. Description of the push button controls

- **RUN** - initiates sample analysis (Section 4). Also used in CAL to record a calibration sample (Section 3).

- **UP arrow control** - used to increase numerical values used in the CAL function (Section 3).

- **CAL** – Hold for 2 seconds to select calibration type (user, Edit or off). Also used to generate a new user calibration. Quickly press and release to print the last result.

- **ZERO** - Hold for 2 seconds to zero balance the instrument (BAL appears on display during operation (Section 2). Also used to exit CAL. Quickly press and release to print the current calibration table.

- **RECALL** - Quickly press and release to recall up to the last ten results (recall mode, section 4.5) or to display the average (averaging mode, section 4.5). Hold for 2 seconds to reset the printer sequence number.

- **DOWN arrow control** - used to decrease numerical values used in the CAL function (Section 3)

1.4. Analyzer Features

1.4.1. Internal Calibration:

The InfraCal TOG/TPH Analyzer reads in relative absorbance units that are proportional to concentration. An internal microprocessor allows the user to enter a calibration in order to read in the desired units. The analyzer contains three different user selectable calibration modes. These are off, user or edit. Section 3 explains the calibration functions in detail.

1.4.2. External Communication:

The InfraCal TOG/TPH Analyzer supports communications to a PC, printer or controller via an RS-232C asynchronous serial communications port. This capability allows for collection of sample measurement data and instrument control by a host computer. The RS-232 interface also allows for data transmission into an excel spreadsheet on a PC. It also allows for multiple calibration tables if more than one table is being used with a single instrument. Specification details for communication parameters are in Section 7.

1.4.3. Recall Function/Averaging Results

The analyzer has the ability to store ten results for use with the averaging function or for local recall and display (see Section 4.5).

1.4.4. Printing the Result

An optional printer can be connected to the analyzer through the RS-232C port located on the back. To print the result, momentarily press and release the CAL button. Note that the Cal Lock switch must be in the (I) position. The result is printed on one line. The first number printed is a 5-digit sequence number. The sequence number is followed by the result. The remainder of the line contains the date, time and day of the week. To reset the print sequence number, unplug the printer and plug it back in. The next result will print as sequence number 000001.
2. Getting Started

2.1. Installation

2.1.1. Location
The InfraCal TOG/TPH Analyzer may be installed virtually anywhere. It is not affected by vibration and it can operate over a broad range of ambient temperatures (40°F, 4°C to 110°F, 45°C).

2.1.2. Power Requirements
The analyzer is powered from a 12 volts d.c. power source. A standard 12 volt power supply is provided with the analyzer, and this may be operated from any grounded a.c. outlet (line power requirements: 100 - 250 VAC, 50-60 Hz, 0.5-0.3 amps). When operating, the TOG/TPH Analyzer consumes approximately 8 watts (0.67 amps).

For field use, the instrument may be connected to other sources of 12 volt d.c. power, such as an external battery pack or the cigarette lighter output of an automobile (contact Wilks Enterprise for details). If the lighter output is used, the vehicle engine should be switched off during operation of the analyzer. Use with the engine running may result in the generation of a \textit{bAtt} error code.

Plug in the external 12 volt supply to the power connector at the rear of the instrument. When plugged in, the instrument display will show \textit{init} for a short time. Once the power-on initialization is complete, the instrument displays \textit{idLE}. The TOG/TPH Analyzer is now ready for use.

\textbf{Note:} the connector is polarized with the center pole positive. Failure to use the correct power supply or the correct cable can result in permanent damage to the analyzer and may invalidate the warranty.

The InfraCal internal memory, which retains the factory and user calibration tables could be erased from a voltage spike or surge on the 120-220VAC line. The use of a surge protection device between the user’s AC line and the 12V DC power supply is recommended to prevent the loss of calibration tables.

2.1.3. Warm up time
For normal operation, it is recommended that the instrument be allowed to warm up for 1 hour prior to use. However, the analyzer is sufficiently stable after 15 minutes, and meaningful measurements may be obtained at this time. If the analyzer is used under the 1 hour warm-up time, frequent checking of the zero is recommended for best results. The longer warm-up time is recommended prior to making critical measurements and when performing analyzer calibration. The InfraCal TOG/TPH Analyzer draws very little power and, if used daily, it can be left on at all times (unless operated from an external battery pack).

2.2. Zeroing the Analyzer
For initial set-up, establish zero for the analyzer using the following procedure. The timer should be set prior to zeroing if using AK-223 solvent. Once a zero has been established, subsequent zero checks should use the zero check procedure described in section 2.2.3.
2.2.1. Setting the timer

Overview

The InfraCal TOG/TPH Analyzer contains a built in, user programmable, timer. Setting the timer to 5 seconds will increase instrument stability and should definitely be done if AK-225 is the solvent used for extraction. A 10 second timer may be required for the AK-225.

Timer Programming

The CAL lockout switch must be in the on (I) position to set the timer (see figure 3, section 1.3.2). Press and hold the RUN button until the current timer value is displayed. The value is displayed as 1 or 2 digits in minutes and 2 digits in seconds, separated by a period (.). Release the RUN button once the current value (initially 0.05) is displayed. Use the up-arrow and down-arrow keys to scroll the timer to the desired value. Five seconds (0.05) is recommended. To zero the timer during programming, press the ZERO button. Once the desired time has been programmed press the CAL button. The display will read idLE.

Timer Operation

The timer is disabled when programmed to zero (0.00). When the timer is non-zero, it is invoked during the normal RUN, ZERO and CAL functions.

Press and release RUN and the timer value is displayed. The timer will count down one second at a time. The dot separating minutes and seconds flashes to indicate the timer is counting. Once the timer reaches zero the display will read run during the sample measurement cycle. The result is displayed on completion.

The ZERO function is initiated by pressing and holding the ZERO button until the timer value is displayed. The timer will count down as described above and bAL will then be displayed. On completion the balance result is displayed. The timer is also invoked during calibration, each time the RUN button is pressed to analyze a sample.

2.2.2. Establishing Zero

Ensure that the cuvette is clean. Clean the cuvette with solvent after each use.

- Fill the cuvette with clean solvent the same as that used for extraction and place in the sample stage.
- Press and hold the ZERO button until the display reads bAL. Release the button. A multiplier value to 3 decimal places will be displayed when zero is established. The actual value is only of interest when reporting problems to the factory.
- Press RUN. The display should read 00 + 02. If not, repeat the zero process.

2.2.3. Zero Check

The zero value is retained in permanent memory and is restored each time the instrument is powered up. It is recommended that the zero be checked and (if necessary) reestablished, on a daily basis.

- To check the zero value, fill the cuvette with clean solvent and press the RUN button.
- If the result is not + 02, reclean the sample holder and verify that the zero sample is not contaminated.
- Check zero again.
- If the result is not + 02, reestablished the zero as described in 2.2.1
3. Analyzer Calibration

3.1. Data Presentation

The standard display format for the TOG/TPH Analyzer is absorbance (AbS). This is the format the analyzer is preset for unless the customer specified otherwise. Other formats are available, and these may be set for specific applications. Details for other formats are in Appendix A – Alternate Data Presentation Modes.

3.2. Considerations for Calibration Standards

There are five choices for calibration.

1. Prepare your own standards. Standard preparation is described in detail in section 3.3.
2. Purchase pre-prepared standards from Wilks Enterprise.
3. Calibrate to an alternate laboratory method.
4. Non-certified factory calibration. Wilks Enterprise can provide the InfraCal TOG/TPH Analyzer with a non-certified 5-point factory calibration using either Freon or Hexane calibration standards
5. Certified laboratory calibration. Wilks Enterprise can recommend a certified laboratory for analyzer calibration.

3.2.1. Calibration correlated to an Alternate Method

Each type of oil and grease analysis sees different physical properties and will sometimes give different results from each other. The InfraCal TOG/TPH Analyzer can be calibrated against an alternate method rather than with prepared standards. For calibration against an alternate method obtain duplicate samples or if possible, test the same sample with the InfraCal and the alternate method. Data collected for this purpose should be obtained with the calibration in the off mode (section 3.4.1). With a minimum of 10 data points, make a graph with InfraCal absorbance data vs. the alternate method values. Select 3 to 5 data points within the desired measurement range of operation and enter these calibration points into the InfraCal memory using the Edit program that is described in section 3.4.3.

Note: If data was collected with the calibration from standards programmed into the Edit program with the edit program on, refer to Appendix B for the calculations needed to correlate the alternate method values to the calibrated InfraCal TOG/TPH values for new values to enter into the Edit program.

3.3. Preparing Calibration Standards

Standards can be made gravimetrically (mg/L for water, mg/kg for soil) or volumetrically (ppm). Customers can prepare their own standards using a non-volatile (heavy weight) oil such as “3-in-1” or an actual oil sample. Calibration standards should cover the desired range for the analysis. An ideal calibration set contains three to five samples. A maximum of 20 samples can be used.

The calibration curve for oil and grease is typically linear up to 3000 ppm (300 ppm for oil in water with a 10:1 extraction ratio). Above 4000 ppm (or 400 ppm for oil in water samples) the curve flattens out. Because the InfraCal TOG/TPH Analyzer performs a point-to-point calibration, samples above the linear range will be accurate up to the highest calibration standard. It is best to calibrate to 4000 ppm (400 ppm
for 10:1 extraction ratios) and dilute the extract for samples above this range. See section 4.4 for dilution procedures. The lowest concentration standard should measure at least 10 on the InfraCal in the off mode for calibration. All successive samples should be spaced apart by at least 10 absorption units.

3.3.1. Preparing Volumetric Standards
Supplies needed for volumetric calibration

- 125-ml Teflon wash bottle
- 10-ml graduated cylinder
- 40-ml vials with Teflon lined caps (at least 3 for holding standards)
- 100 microliter syringe
- Solvent (see Appendix C)
- Calibration oil

Below is a chart for mixing volumetric standards. For water analysis with an extraction ratio of 10:1, the oil and grease is concentrated 10 times in the solvent. The actual value of the standard is divided by 10 in order to match the concentrated value of the extract. The water analysis column below makes this correction. For standards below 1000 ppm (100 ppm for water samples), it is best to mix a concentrated stock solution to be diluted for lower standards.

For example, the desired range for a particular analysis is typically 10 ppm with values up to 100 ppm in water.

1. Prepare a stock solution for 100 ppm for water analysis. (10 ul oil in 10 ml of solvent).
2. Pour half (5 ml) into a 10-ml graduated cylinder.
3. Fill with solvent up to 10 ml. This will cut the 100 ppm standard in half to be 50 ppm.
4. Repeat this again with the 50 ppm standard for a 25 ppm standard.

This makes three standards (100 ppm, 50 ppm and 25 ppm) within the operating range of 10 – 100 ppm.

<table>
<thead>
<tr>
<th>Actual ppm</th>
<th>Corrected ppm for</th>
<th>Oil</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1:1) Extraction (soil analysis)</td>
<td>10:1 extraction ratio (water analysis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>400</td>
<td>40ul</td>
<td>10 ml</td>
</tr>
<tr>
<td>3000</td>
<td>300</td>
<td>30ul</td>
<td>10 ml</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
<td>20ul</td>
<td>10 ml</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>10 ul</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Note: To convert ppm to mg/l, multiply by the specific gravity of the oil used for the calibration standard (for 3-in-1 Oil or 30W motor oil, use 0.865.) by the ppm value to get a mg/l value

3.3.2. Preparing Gravimetric Standards
Supplies needed for gravimetric calibration

- 125-ml Teflon wash bottle
- 10-ml graduated cylinder
- 10-ml volumetric
40-ml vials with Teflon lined caps (at least 3 for holding standards)
Solvent (see Appendix C)
Calibration oil
Analytical Balance that reads to .001 gram

Prepare a stock solution and make the appropriate dilutions to cover analysis range. For water analysis with an extraction ratio of 10:1, the oil and grease is concentrated 10 times in the solvent. The actual value of the standard is divided by 10 in order to match the concentrated value of the extract.

1. Weigh about 0.1 gram of oil in a 10-ml volumetric flask.
2. Record the exact weight.
3. Fill with solvent up to the 10 ml line.

Calculate the exact concentrations as shown below:

Oil weight x 10,000 = mg/l (multiply grams x 1000 to equal mg and divide 10 ml by 100 to equal liters = 0.1. 1000 divided by 0.1 = 10,000)

For an oil weight of 0.110 gram in 10 ml, the Stock solution will be:

0.110g x 10,000 = 1,100 mg/l

Using the above hypothetical stock solution, an example of dilutions for the desired range for a particular analysis that is typically 10 mg/l with values up to 100 mg/l in water could be as follows.

Stock solution 1,100 mg/l divided by 10 (for a 10:1 extraction in water) = 110 mg/l

1. Pour half of the stock solution(5 ml) into a 10 ml graduated cylinder.
2. Fill with solvent up to 10 ml. This will cut the 110 mg/l standard in half to be 55 mg/l.
3. Repeat this again with the 55 mg/l standard for a 27.5 mg/l standard.

This makes three standards (110 mg/l, 55 mg/l and 27.5 mg/l) covering the operating range of 10 – 100 mg/l for oil in water analysis.

3.4. **Calibrating in the Analyzer**

The Analyzer contains three different user modes in the calibration. These are *uSER*, *Edit* or *oFF*. If a factory calibration is installed there will be a fourth mode, *FACT*.

In the *oFF* mode the instrument measures levels in arbitrary absorption units that are proportional to concentration levels. Higher values indicate increased levels of hydrocarbons. This mode should be used to collect “raw” data for the Edit mode or for comparing to an alternate method.

The *Edit* mode allows the user to edit an existing calibration table or to create one from scratch, using absorption values obtained in the *oFF* mode. This is the recommended calibration mode as standards (or samples used to calibrate to an alternate laboratory method) may be run several times and an average can be entered into the table.

The *uSER* mode enters the calibration at the time the standards are presented to the analyzer.
3.4.1. Selecting the Calibration Mode

- Press the CAL button for two seconds, until CAL appears on the display. Press the RECALL button to display the active table, one of uSeR, Edit or oFF. Press and release the RECALL button repeatedly until the desired mode is displayed.

- Press the ZERO button to exit the calibration mode. iDLE will be displayed.

3.4.2. Collecting calibration data

Calibration data can be collected from standards (section 3.3) or from actual samples compared to an alternate oil and grease measurement method (section 3.2.2). If the data is to come from actual samples, skip to section 4 for extraction procedures.

1. Allow the analyzer to warm up at least one hour.

2. Always zero the Analyzer prior to calibration or collecting data for calibration analysis (see section 2.2).

3. Make sure the calibration is in the oFF mode (section 3.4.1).

4. Fill cuvette with the lowest value standard, insert in sample stage and press run. Record the result on the table below (AO1). Record the standard value in CO1. Standards may be run several times and an average can be entered on the table below.

5. Repeat for the remaining standards.

Note: The results can plotted graphically as a calibration curve. The resulting plot can be used to prepare a reference chart for users who prefer not to use the analyzer’s internal calibration or for data points to be edited into calibration.

Absorbance Versus Calibration Standard or Alternate Method Table

<table>
<thead>
<tr>
<th>(Absorbance Value)</th>
<th>(Calibration Standard in Desired Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01 = ___________</td>
<td>C01=</td>
</tr>
<tr>
<td>A02 = ___________</td>
<td>C02 =</td>
</tr>
<tr>
<td>A03 = ___________</td>
<td>C03 =</td>
</tr>
<tr>
<td>A04 = ___________</td>
<td>C04 =</td>
</tr>
<tr>
<td>A05 = ___________</td>
<td>C05 =</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>A20 = ___________</td>
<td>C20 =</td>
</tr>
</tbody>
</table>

N (Number of calibration points or calibration standards) = ____________

3.4.3. Entering the User Calibration Data with the Edit program

1. Press the CAL button for two seconds, until CAL appears on the display. Press RECALL until Edit is displayed.

2. Press CAL, the display will read n= for a short time, followed by the number of entries currently in the calibration table. Scroll to the desired number of entries (0 - 20). Selecting 0 will erase any existing calibration table.

3. Press CAL to proceed. The display will read A01= for a short time followed by the current absorption value for the first calibration table entry. Scroll this to the desired value from the “absorbance versus calibration standard” table, using the up/down arrows.

4. Press CAL again and the display will read C01= followed by the current analyzer concentration value for the entry. Scroll this to the desired value from the table. Continue to press CAL to step
through all absorption and concentration values for the table size \(n = \) entered. Once all entries have been created the display will read \textit{idLE}.

3.4.4. User Calibration Mode Procedure:

Note that this is not the preferred method to use for calibration of the InfraCal Analyzer. If you would like to use this method, please contact tech@wilksir.com for instructions.

3.4.5. Calibration printing

With the optional printer, the current calibration table can be printed by momentarily pressing and releasing the ZERO button when the analyzer is idle. The first line indicates which calibration is active followed by the date and time. The second line gives the headings for the calibration table that follows. ABS represents absorption and CON represents concentration. The table headings are followed by the balance value. One additional line is printed for each calibration table entry. The absorption and concentration values are given.

4. Analyzing an Oil Sample

These extraction procedures are a simplified version of ASTM Method D 3921 and EPA methods 418.1 or 413.2. The ASTM or EPA extraction methods may be used if desired.

4.1. Analyzer Pre-Check

1. For calibration, allow the analyzer to warm-up and stabilize for one hour
2. Ensure that the cuvette is clean. Use clean solvent to rinse the cuvette after each use. \textit{Do not use water to clean the cuvette.}
3. Perform a zero check (section 2.2.3)
4. Make sure glassware and sample containers are clean.

4.2. 10 to 1 Extraction Procedure for Oil in Water

4.2.1. Supplies Needed for Extraction in Water

- 125-ml Teflon wash bottle
- 100-ml graduated cylinder with stopper or sample bottle graduated in ml (i.e: 177-ml prescription bottles)
- 125-ml stopper separatory funnel or sample bottles with septa caps
- Hydrochloric (HCl) or sulfuric acid (\(H_2SO_4 \))(dilute with water 1:1)
- pH indicator strips or pH meter
- 10-ml or 25-ml Graduated cylinder (depending on sample size)
- Sodium sulfate (\(Na_2SO_4 \)), ACS, granular anhydrous
Glass funnel
Whatman 40 filter paper, 11cm, or equivalent
Silica gel (for TPH), anhydrous, 75-150 micrometers
Disposable polyethylene pipette or equivalent
5-mL syringe (for use with prescription bottles)
Solvent (see Appendix C for solvent options)

Note: With a 50 mm Cylindrical Cell (Model CVH-50), a larger extract volume is needed to fill the cell. A minimum of 200-mL of sample and 20-mL of solvent is needed. The glassware sizes listed above will need to be adjusted for the larger volume sample.

4.2.2. Considerations:

- Make sure glassware for used for analysis is clean. Any residual hydrocarbons in the glassware and sampling containers will be extracted and added to the TOG or TPH reading. To check the glassware, rinse with solvent then put the solvent rinse in the quartz cuvette. A reading above 04 shows contaminated glassware.
- Oil and grease tends to adhere to the surfaces it comes in contact with. Use the entire sample collected. Either mix the solvent and sample in the sample collection container or rinse the sample collection container with a portion of the solvent to be used for extraction.

4.2.3. Total Oil and Grease (TOG) Extraction from Water

1. Pour measured sample into separatory funnel. If using a graduated prescription bottle with a septa cap, solvent can be mixed directly in the bottle without using the separatory funnel.
2. Adjust the pH to less than 2 with Hydrochloric acid or Sulfuric Acid (typically 3-5 drops depending on buffers in sample).
3. Add one tenth of the sample size of solvent to the sample collection container to rinse interior surfaces and cap. (With the 177-ml prescription bottle, it is convenient to collect 140 ml of sample and add 14 ml of solvent). Pour this solvent into separatory funnel containing sample or directly into the prescription bottle.
4. Shake the separatory funnel or prescription bottle vigorously for 2 minutes with periodic venting to release excess pressure.
5. Allow the phases to separate.
6. Place a filter paper in a filter funnel and add approximately 1 gram (1Tablespoon) of sodium sulfate.
7. Drain the solvent (lower) layer from the separatory funnel through the sodium sulfate into a clean container (10-mL graduated cylinder can be used). With the prescription bottle, invert the bottle so that the solvent layer fills the neck. Using a 5 ml syringe withdraw 4-5 mL of the solvent layer and deliver through the sodium sulfate into a clean container.

Note: Use of the sodium sulfate is necessary to prevent water from interfering with the analysis. With totally hydrophobic solvents, this step may be skipped. It is not necessary to collect all of the solvent but it is necessary to preclude water to prevent caking of the sodium sulfate.
8. Fill the cuvette with the extract.
9. Place the cuvette into the holder on the InfraCal TOG/TPH Analyzer with the frosted side facing front.
10. Press the RUN button and the value will be displayed.
11. If the result is above the calibration range, see section 4.4 for dilution procedure.
4.2.4. Total Petroleum Hydrocarbon (TPH) Extraction from Water

The difference between TPH (Total Petroleum Hydrocarbon) and TOG (Total Oil and Grease) is the polar organics are removed from the extract using silica gel. The remaining hydrocarbons are the non-polar components considered to be TPH.

1. Follow the above procedure steps 1-7.
2. Place a filter paper in a filter funnel and add approximately 1 gram (1 Tablespoon) of silica gel.
3. Pour extract from container though the silica gel into a clean container.
4. Fill the cuvette with the extract.
5. Place the cuvette into the holder with the frosted side facing front.
6. Press the RUN button and the value will be displayed.
7. If the result is above the calibration range, see section 4.4 for dilution procedure.

4.3. 1 to 1 Extraction Procedure for Oil in Soil

4.3.1. Supplies Needed

- 40-mL vials with Teflon-faced caps (EPA/VOA)
- 10-mL or 25-mL Graduated cylinder (depending on sample size)
- Sodium sulfate (Na_2SO_4), ACS, granular anhydrous
- Glass funnel (for TPH)
- Whatman 40 filter paper, 11cm, or equivalent (for TPH)
- Silica gel (for TPH), anhydrous, 75-150 micrometers
- Disposable polyethylene disposable pipette or equivalent
- Plastic air syringe with filter frit and plunger (or equivalent)
- Sample spatula
- Solvent (see Appendix C for solvent options)
- Analytical balance that reads to .1 gram

4.3.2. Total Oil and Grease (TOG) Extraction from Soil

1. Collect a soil sample directly in a washed and weighed (to the nearest 0.1 gram) EPA/VOA 40 ml vial. The sample should be about ¾ of the volume of the vial.
2. Weigh the sample to the nearest 0.1 gram, subtracting the tare weight of the vial. Note the weight.
3. If the sample is wet and clumpy, add up to 5 grams of sodium sulfate. Use the spatula to break up the clumps.
4. Add the same amount of solvent in ml as the soil sample weight in grams (do not include the weight of the sodium sulfate). ie: for 11.2 grams of soil, add 11.2 ml of solvent. This will give a 1:1 extraction ratio.
5. Cap the vial with the Teflon side of the liner toward the sample. Shake vigorously for 2 minutes.
6. Pour the solvent into the plastic air syringe with filter frit, leaving as much of the soil in the vial as possible.
7. Place the plunger into the air syringe force the solvent through the filter frit into a clean container or directly into the cuvette.
8. Place the cuvette into the holder with the frosted side facing front.
9. Press the RUN button and the value will be displayed.
10. If the result is above the calibration range, see section 4.4 for dilution procedure.

4.3.3. Total Petroleum Hydrocarbon (TPH) Extraction from Soil

The difference between TPH (Total Petroleum Hydrocarbon) and TOG (Total Oil and Grease) is the polar organics are removed from the extract using silica gel. The remaining hydrocarbons are the non-polar components considered to be TPH.

1. Follow the above procedure steps 1-7.
2. Place a filter paper in a filter funnel and add approximately 1 teaspoon of silica gel.
3. Pour extract from container though the silica gel into a clean container.
4. Fill the cuvette with the extract.
5. Place the cuvette into the holder with the frosted side facing front.
6. Press the RUN button and the value will be displayed.
7. If the result is above the calibration range, see section 4.4 for dilution procedure.

4.4. Dilution Procedures

If the sample reading is above the highest calibration point, a dilution must be performed to bring it into the measurement range.

4.4.1. 10:1 Dilution

1. Pour 1 ml of solvent extract into a 10-mL graduated cylinder
2. Add 9 mL of solvent for a 10 to 1 dilution.
3. Mix and pour diluted extract into a clean cuvette.
4. Add a zero to the result on the InfraCal’s digital display and record your reading, i.e. if the result is 465, the extract value after dilution is 4650 ppm.
5. This procedure may be repeated if the extract is still not within the calibration range. Add two zero’s to the InfraCal’s digital display if two dilutions are performed.

4.5. Averaged Results Display

The InfraCal Analyzer can display the average of up to ten sample measurements. To use the averaging mode, use the following procedure:

• Momentarily press the RECALL button once and ignore the result displayed.
• Analyze up to ten replicate samples using the measurement procedure described above.
• Momentarily press the RECALL button to display the average.

The next sample measurement will then start a new average accumulation.

The Analyzer alternatively can be configured to recall the last 10 measurements (from newest to oldest) in a circular fashion. First the TOG/TPH Analyzer must be switched from the average mode (factory
default) to the recall mode as described below. Once the recall mode is selected momentarily press the **RECALL** button repeatedly to display the previous results. The TOG/TPH Analyzer recall mode can be switched by pressing the **ZERO** button first, immediately followed by the **RECALL** button and holding both buttons for two seconds. The display will read *rCL* when switched to the recall mode. Repeat the procedure to return to average mode. The display will read *Ag*.

5. **Detailed Sample Stage Description**

5.1. **Cuvette (CVH) sample stage**

5.1.1. **Cuvette Sample Stage Description**

The InfraCal TOG/TPH Analyzer Model CVH is supplied with an integrated 10mm cuvette holder and optics sensing system. The sample stage includes the infrared source (modulated) and detector system, positioned such that an elliptical energy beam is transmitted through the sample and focused directly on the detector-sensing window.

Figure 4: The InfraCal TOG/TPH Analyzer, Model CVH Sample Stage: Front View

Figure 5: The InfraCal TOG/TPH Analyzer, Model CVH: Top View
5.1.2. Cuvette (Model CVH) Measurement Concept

The InfraCal Model CVH Analyzer makes use of the fact that hydrocarbons such as oil and grease can be extracted from water or soil through the use of an appropriate solvent. The extracted hydrocarbons absorb infrared energy at specific wavelengths and the amount of energy absorbed is proportional to the concentration of the oil/grease in the solvent. This can be directly calibrated or converted to the amount of oil in the original sample if the ratio of solvent to water is carefully controlled.

Model CVH is designed for use with EPA Methods 413.2 and 418.1. In this case, freon is the solvent used. Since freon is transparent at the analytical wavelength used for hydrocarbon absorption, the mixture is placed directly in a quartz cuvette with a known path length. When the cuvette is placed in the sample stage a focused beam is passed through the sample and focused directly on the dual detector package. The energy collected at the analytical wavelength (I_A), is reduced when compared to the energy collected at the reference wavelength (I_R). The oil concentration is determined by a calculation of the logarithm of the ratio of the light transmission at the reference wavelength to the light transmission at the analytical wavelength (Beer-Lambert law) as shown in Figure 6. The Beer-Lambert law assumes a linear relationship between absorbance and concentration. Deviations from linearity are determined by obtaining absorbance values from known samples and an internal point-to-point calibration table is prepared (Section 3) so that actual concentration is directly presented on the display. If the concentration ratio used during extraction (typically 10 parts sample to 1 part solvent for liquid samples and 1:1 for soil samples) is taken into account during calibration, the display will read directly in the desired units.

![Cuvette Diagram](Figure 6: The Measurement of IR Absorption of an Oil Sample with a Cuvette)

\[
A = \log \frac{I_R}{I_A}
\]

5.1.3. Cuvette Considerations

1. All cuvettes must be made with infrared transmitting quartz windows (“Infracil” or equal).
2. Insert the cuvette in the holder with the frosted sides facing the front and back of the Analyzer. For optimum performance always insert with the same orientation. If multiple cuvettes are used they should be matched.
3. The cuvette holder accepts standard 10-mm quartz cuvettes. For oil and grease determinations based on EPA Methods 413.2 and 418.1, the range in mg/l is from less than 2 to 4000 mg/l. For concentrations consistently above 4000 mg/l, 2 mm or 1 mm cuvettes may be used. These will fit in the Model CVH sample stage with appropriate adapters.
4. Variation in cuvette size may require sample system readjustment. If the test cuvette series is either too tight or too loose for proper insertion and performance, the pressure snaps inside the sample holder will need minor adjustment. To remove the sample system slide the stage to the left and then lift the right edge.

Note: The cables do not have to be removed. With a slotted head screwdriver, turn the two (2) pressure snaps (clockwise tightens; counter clockwise loosens) 1/4 turn (see figure 4). Re-insert cuvette and “feel” for proper tightness. Reinstall sample system when proper pressure snap tightness has been achieved for your cuvettes.
6. Analyzer Specifications

6.1. External Power Requirements:

The InfraCal TOG/TPH Analyzer operates off external 12-volt power. The power sources can be either regulated DC power supplies or an external battery. This power can be provided by the user or by Wilks Enterprise, Inc. The suggested minimum requirement specifications for the 12 volt power source applied to the analyzer are described below:

Wall Supply Specifications:
Input: 100-250 VAC, 50-60 Hz, 0.5A
Output: 12 VDC, ±1%, 25 Watts

Battery Supply Specifications:
Output: 14 VDC Maximum, 11 VDC Minimum

Load Specifications:
1.5 Amperes Peak

6.2. Physical:

Dimensions: 6.5 in. x 6.5 in. x 5 in. (165 mm x 165 mm x 127 mm)
Weight: 4.5 lb. (2.0 kg.)
Control: Display (output) 4 digit 7 segment red LED,
5/8 in. character height
User (input) 4 multi-function push-button switches
Connectors: Power -- Switchcraft Model 760 plug or equivalent
Communications -- 9-pin D-Sub, female

6.3. Environmental:

Temperature: Non-operating -- 0°F (-18°C) to 125°F (52°C)
Operating -- 40°F (4°C) to 110°F (45°C)
Humidity: Relative -- 10% to 60% non-condensing

6.4. Electrical

Noise: Rejection -- 60 dB minimum

Drift: Short term Ambient --(< 1 Hr.) ± 0.3% of full scale
Long term Ambient -- (> 1 Hr.) ± 0.1% of full scale
Temperature -- ± 0.03% of full scale per degree C
Repeatability -- ± 0.1% of full scale

Response: On Delay -- 5, 10, 15 or 20 second factory-set intervals
Measure Time -- 5 seconds
Modes -- Local control or remote PC control
Resolution: Conversion -- 16 Bits (0.0015%)
Ranging: Digital Ranging -- 256 step automatic ranging
Analog Range -- 0 to 4.096 volts
Answer Range -- Absolute; 00 to 9999
 Percent; 0.0 to 100.0%
 Decimal; .00 to 99.99
Measure Range -- Dependant on sample concentration ratio
Measurement Accuracy: ± 1% of full scale
Measurement Repeatability: ± 0.1%, ±1 digit
Memory: Non-volatile memory for calibration and configuration data

6.5. **Calibration:**
- Electronic zero balance adjustment
- Up to 20 point curve fitting calibration
- Modes: Edit Table
 Off
 Factory (special order)

7. **Analyzer Communications Interface**

7.1. **Abstract**

The InfraCal TOG/TPH Analyzer supports communications to a PC or other host via an RS-232C asynchronous serial communications port. This capability allows for collection of sample measurement data and instrument control by a host computer. The host can also maintain calibration tables and download them to the instrument as required. This is particularly useful when more than one table is being used with a single instrument. Specification details for interfacing user customized host software are as follows:

7.2. **Physical Connection**

The InfraCal TOG/TPH Analyzer is connected to the external device via the 9-pin female DB9 connector located on the rear panel in the lower left-hand corner. The InfraCal TOG/TPH Analyzer operates as a DCE device. To connect to a PC, a standard straight through 9 pin cable can be used, but only 3 wires are required. The required signals are Transmit Data (TXD), Receive Data (RXD) and Ground (GND). The pin out is as follows:

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXD</td>
<td>3</td>
</tr>
<tr>
<td>TXD</td>
<td>2</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
</tr>
</tbody>
</table>

1 Systems with serial numbers lower than 10200 require a null modem cable or null modem adapter.
7.3. Communications port setup parameters

The port setup required by the InfraCal TOG/TPH Analyzer is:

- 9600 baud
- 8 data bits, 1 stop bit
- No parity

7.4. Operation

The TOG/TPH Analyzer accepts ASCII commands from the host and returns data as a response to certain commands or, in data logging mode, on completion of a measurement cycle. All commands are two characters in length. Certain commands have parameters that follow the command. Parameters are separated by commas. All commands are terminated by a carriage return character. All data responses are comma separated ASCII fields, terminated by a carriage return character. The first field indicates the result type; the remaining fields are the result. Result types are ‘B’ for balance results, ‘R’ for run results or ‘C’ for calibration data. The result format is determined by the presentation mode and is identical to the LED display data. The Read Display Mode command returns a two character mode code. Alphabetic characters can be sent in upper or lower case. Response data is always upper case.

Command Set

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB</td>
<td>Read balance</td>
<td>B,1.025 B,0.865</td>
</tr>
<tr>
<td>RR</td>
<td>Read displayed result</td>
<td>R,27.5 R,315 R,1.873</td>
</tr>
<tr>
<td>RU</td>
<td>Run (same as RUN button)</td>
<td>None</td>
</tr>
<tr>
<td>RA</td>
<td>Run & display uncalibrated</td>
<td>result None</td>
</tr>
<tr>
<td>BA</td>
<td>Balance (same as Zero switch)</td>
<td>None</td>
</tr>
<tr>
<td>LR</td>
<td>Enable results data logging</td>
<td>None</td>
</tr>
<tr>
<td>DR</td>
<td>Disable results data logging</td>
<td>None</td>
</tr>
<tr>
<td>RM</td>
<td>Read display mode</td>
<td>MA, MP, MD or MR</td>
</tr>
<tr>
<td>MA</td>
<td>Set display mode to absolute</td>
<td>None</td>
</tr>
<tr>
<td>MP</td>
<td>Set display mode to percent</td>
<td>None</td>
</tr>
<tr>
<td>MD</td>
<td>Set display mode to decimal</td>
<td>None</td>
</tr>
<tr>
<td>MR</td>
<td>Set display mode to ratio</td>
<td>None</td>
</tr>
<tr>
<td>WB,<params.></td>
<td>Set balance data</td>
<td>None</td>
</tr>
<tr>
<td>RC,<params.></td>
<td>Read calibration table</td>
<td>See detailed description</td>
</tr>
<tr>
<td>WC,<params.></td>
<td>Set calibration table</td>
<td>None</td>
</tr>
<tr>
<td>CM</td>
<td>Read Calibration Mode</td>
<td>CD, CE or CF</td>
</tr>
<tr>
<td>CD</td>
<td>Disable Calibration</td>
<td>None</td>
</tr>
<tr>
<td>CE</td>
<td>Enable User Calibration</td>
<td>None</td>
</tr>
<tr>
<td>CF</td>
<td>Enable Factory Calibration</td>
<td>None</td>
</tr>
<tr>
<td>ES</td>
<td>Return error status</td>
<td>E,0 E,2</td>
</tr>
<tr>
<td>RE</td>
<td>System reset</td>
<td>None</td>
</tr>
<tr>
<td>ID</td>
<td>Return firmware ID</td>
<td>2.02.06</td>
</tr>
</tbody>
</table>

7.5. Data Logging
Data logging provides results output at the end of each RUN or BALANCE cycle. The results are output when data logging is enabled both for functions initiated from the instrument control panel and functions initiated by the host. The format of the data returned after a RUN cycle is as shown for the RR command and is determined by the display mode. The format of the data returned after a BALANCE cycle is as shown for the RB command. The RA command allows the host to initiate a run cycle and data log a result that is not adjusted by the calibration procedure. This can be used by an intelligent host resident calibration table generator.

7.6. Remote Zero Balance Control

The instrument zero balance can be controlled via the communications port. The RB, WB and BA commands provide the necessary controls. This feature can be used to store multiple zero values for different operating conditions. This feature combined with the calibration controls described in the next section can be used to maintain multiple calibration curves when using the instrument for multiple applications.

The RB command will retrieve the current zero balance data. The WB command can then be used to reset the current zero balance to a previously recorded value. The WB data field is identical in format to the data returned in response to the RB command.

The BA command can be used to initiate a zero balance function under remote control. The operation is identical to initiating a zero balance from the instrument control panel. The user must insert the zero sample in the instrument prior to issuing this command. If data logging is enabled the result will be returned on completion of the function. The data format is identical to the RB command response. The result can optionally be read with the RB command if data logging mode is not used.

7.7. Remote Calibration Control

Calibration data can be retrieved or set under remote control. Due to the complexity of the calibration function (and the need to utilize multiple calibration standards) initial calibration can only be performed from the instrument panel. Another approach is to use the host to generate one or more calibration curves from uncorrected data log results collected with the RA command. This technique is extremely useful if the user desires to generate a calibration curve based on an average result of several measurements from a lot of each calibration standard.

The RC command is used to retrieve the current calibration table. A Calibration table consists of zero to twenty entries. The RC command can take the following forms:

- RC Read entire calibration table
- RC,0 Read calibration table size
- RC,n Read a single calibration table entry, where n is the entry number.

The RC,0 command response is C,n where n is the number of calibration table entries from 0 to 20. If 0, the instrument is not calibrated. Otherwise, n is the number of calibration table entries.

The RC,n command response is C,n,x,y where n is the entry number as received, x is the raw measurement data as it appears on the display during calibration and y is the actual value as set by the user during calibration. The format is determined by the display mode (absolute, percent, or decimal). Calibration commands should not be used when in ratio mode since ratio mode does not use a calibration table. An RC command requesting data for a table entry number greater than the current table size returns erroneous data.
The RC command with no arguments returns the complete calibration table, one entry at a time starting with the table size information. The individual entries are then returned in numerical order up to the number of entries.

Read Calibration Table Example

Assume the instrument is calibrated in the absolute mode using three standards. Assume the calibration results were as follows:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Measured</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>70</td>
</tr>
</tbody>
</table>

The RC command will return the following:

- C,0,3
- C,1,15,30
- C,2,26,50
- C,3,33,70

The RC,0 command will return C,0,3

The RC,2 command will return C,2,26,50

The WC command can be used to download calibration table data based on previously uploaded data or as determined by a host program. The command format is WC,n,x,y where the parameters are identical in format to the RC command. The parameters must match the current display mode. When using the WC command the table size and all necessary table entries should always be downloaded. Once all table entries have been downloaded the table size should be set.

Write Calibration Table Example

To download the calibration table described in the previous example, send the following commands:

- WC,1, 15,30
- WC,2, 26,50
- WC,3, 33,70
- WC,0,3

8. Service and Customer Support

Your InfraCal® TOG/TPH Analyzer may have been purchased either directly from Wilks Enterprise or from a local dealer or representative. If you have a technical question relative to the operation of the instrument or relative to the analysis, please contact Wilks Enterprise at the contact address provided below:

Customer Services Department

Wilks Enterprise, Inc.

25 Van Zant Street, Suite 8F

East Norwalk, CT 06855

USA
Telephone: (203) 855-9136
FAX: (203) 838-9868
E-mail: tech@WilksIR.com

Service and Repair

During the warranty period, Wilks Enterprise, Inc. offers free factory service for all failures that occur from normal instrument usage. The user is only required to cover the cost of shipping the instrument to the factory. After the warranty period, the user is required to cover the factory’s cost of servicing plus all shipping charges. Normal one week turnaround is offered for all InfraCal instruments that are returned to the factory for service. For users requiring faster service times, Wilks Enterprise also offers an advance replacement program that can respond to a user’s needs with instrument replacement typically in less than 24 hours. For extended service contracts, advanced replacement programs, factory service charges or sample system installation procedures, please contact Wilks Enterprise, Inc. for details.

Appendix A: Alternate Data Presentation

The standard display format for the TOG/TPH Analyzer is absorbance (AbS) It provides relative absorbance value. Other formats are available, and these may be set for specific applications.

Note: The TOG/TPH Analyzer must be calibrated in the selected data presentation mode. Changing the data presentation mode requires re-calibration.

The following are the different data presentation modes available of the InfraCal analyzer:

Percent Mode (PCt): Calculated values are displayed to a single decimal place (0.0).

Decimal Mode (dEC): Calculated values are displayed to two decimal places (.00)

Absorption Mode (AbS): An arbitrary scale related to the raw absorption of the sample (00).

Note: Inserting a decimal point does not change the raw absorbance value displayed for a given sample. ie: an Abs reading of 25 becomes 2.5 (pct) or .25 (dec).

Ratio Mode (RAt): A threshold based scale where a value defining an acceptable limit for maximum or minimum acceptable concentration is set to the value of 1.000. All values less than 1.000 indicate that the concentration is less than the threshold, while all values greater than 1.000 indicate that the concentration is greater than the threshold.

The TOG/TPH Analyzer display format can be switched between modes by pressing and holding both the CAL and ZERO buttons for two seconds. Each time the CAL and ZERO buttons are pressed the display mode changes. Release both buttons and repeat until the desired mode is displayed. The display will read: AbS for absorption mode, PCt for percent mode, dEC for decimal mode, and RAt for ratio mode. Push RUN to exit the display mode.
Appendix B: Correlation to an Alternate Method

If values for sample analysis were taken with the Edit program on and calibration data in the Edit program, The following can be used to calculate revised calibration points to re-enter into the Edit program.

Rule Of Thumb:

- If the laboratory’s analysis is greater in concentration than the Field analyzer’s analysis, use a multiplier with the field instrument.
- If the laboratory’s analysis is less in concentration than the Field analyzer’s analysis, use a divider with the field instrument.

Example 1:

Assume the sample analysis on the Wilks InfraCal read as follows:
SAMPLE A = 25 ppm
SAMPLE B = 13 ppm
SAMPLE C = 11 ppm
Assume the alternate method to analyze the duplicate samples read as follows:
SAMPLE A= 63 ppm
SAMPLE B= 33 ppm
SAMPLE C= 28 ppm

In this case the alternate method read higher Oil and Grease concentrations than the Wilks InfraCal Analyzer. Therefore the difference must be determined by dividing the lowest number into the highest number. The instrument must be made to read higher. A multiplier must be determined as shown in the example below.

InfraCal results:
\[25 + 13 + 11 = 49 \text{ ppm} \]

Alternate Method Results
\[63 + 33 + 28 = 124 \text{ ppm} \]

124 divided by 49 = 2.5 multiplier

The multiplier for this example is 2.5. Therefore multiply the value from the “Calibration Standard in Desired Units”(CO1, CO2…) column in the Absorbance Versus Calibration Standard or Alternate Method Table (section 3.4.2) by 2.5. This will correlate the values to an alternate method. The new Calibration Standard values can be re-entered into Edit program (see section 3.4.3).

Example 2:

Assume the sample analysis on the Wilks InfraCal read as follows:
SAMPLE A = 63 ppm
SAMPLE B = 33 ppm
SAMPLE C = 28 ppm
Assume the analysis using the alternate method to analyze the duplicate samples read as follows:
SAMPLE A = 25 ppm
SAMPLE B = 13 ppm
SAMPLE C = 11 ppm
In this case alternate method read higher Oil and Grease concentrations than the Wilks InfraCal Analyzer. Therefore the difference must be determined by dividing the lowest number into the highest number. **The instrument must be made to read lower. A divider is needed instead of a multiplyer.** As in example 1 divide the lowest number into the highest number to get the correlation factor.

124 divided 49 = **2.5 divider**

The divider for this example is 2.5. Therefore divide the value from the “Calibration Standard in Desired Units” (CO1, CO2…) column in the *Absorbance Versus Calibration Standard or Alternate Method Table* (section 3.4.2) by 2.5. This will correlate the values to an alternate method. The new Calibration Standard values can be re-entered into **Edit** program (see section 3.4.3).

Appendix C: Solvent Selection Guide

Freon-113 A volatile CFC compound previously specified for EPA Methods 413.2 and 418.1. While its manufacture has been discontinued, its use has been extended by the EPA until 2003 and it is readily available in many parts of the world. Since it is heavier than water, the solvent after extraction will be on the bottom. Because of its infrared transparency, it can be used with a 10mm cuvette or 50mm cylindrical cell. Freon is ideal for applications requiring the measurement of light ends, as well as, the heavier components in water and soil samples.

Perchloroethylene A moderately volatile non-hydrocarbon solvent that has been proposed as a possible replacement for Freon-113. Many grades are stabilized with hydrocarbons that make them unsuitable for TOG and TPH analysis. The only hydrocarbon-free grade we have found suitable is J.T. Baker’s Tetrachloroethylene ULTRA RESI-ANALYZED (Perchloroethylene) product # 9360, www.mallbaker.com.

AK-225 A volatile HCFC solvent that nevertheless has low ozone depletion efficiency. Current tests indicate that it should be a good replacement solvent for Freon-113. However, because of absorption in the C-H region, it has lower sensitivity than Freon-113 but is still usable for analysis by transmission methods. AK-225 is heavier than water and, therefore, the solvent after extraction will be on the bottom. At the lower concentration ranges, some method of moisture removal such as sodium sulfate may be required.

S-316 A proprietary, non-hydrocarbon solvent said by its manufacture to be environmentally safe. Since S-316 is heavier than water, the solvent after extraction will be on the bottom. Because of its transparency in the C-H region, it can be used with a 10mm cuvette or 50mm cylindrical cell.